
Get rotated, idiot!
Raphael Zumbrunn A representative exploration of symmetry and group theory.

Imagine if you will, being a shark, minding
your own business. Just swimming around
the ocean floor.
Due to your bilateral symmetry you can
freely decide1 to go left or right. As long as
the ocean floor is even we could call both
options ’degenerate’.
Now what would you feel like if you were to,
for the sake of argument, be rotated around
an axis inclined at 45◦ to your spine (see
Figure 1.1).

Figure 1.1: Shark being rotated (source[1])

As the rotation axis did not preserve your
symmetries, you would be rightfully con-
fused! 2 You wouldn’t be half as confused
if you had just been mirrored through the

plane bisecting you, would you? The essen-
tial difference between those two scenarios
lies in a simple word; symmetry!

But what does symmetry actually mean3?

Symmetry means exactly what it
means
What happened here is a very obvious phys-
ical thing, but mathematically it is actually
very interesting. 4 We as humans are accus-
tomed to the phenomenon that ‘doing the
symmetry’ on a symmetric object leaves
it the same (Mirroring something along its
mirror plane does nothing). And that do-
ing something that ‘is not the symmetry’,
changes it (Mirroring a non mirror symmet-
ric object has to change it). Mathemati-
cally this connection is less obvious. How
does a property of an object (symmetry of
the shark) combine with an action on the
object (getting rotated) to yield an object
(rotated shark). And how does the result
change depending on whether the actions
and the objects symmetry match?
This is where group theory comes into play.
Mathematically a group is a set with a bi-
nary operation that fulfills the group ax-
ioms Associativity existence of unique identity and existence

of unique inverse.
1 see last Exsi
2 The environment used to be uniform in the plane parallel to your body, now this symmetry has been broken!
3 If you relly want to learn the details of symmetry you should check out the course MMPII[?]

4 if you are into math that is. . .
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“Isn’t it annoying when peo-
ple explaining something put
complicated definitions in the
text not to be understood but
just to accentuate how ‘diffi-
cult’ the topic is that they try
to explain?”

Simply put, a group is a collection of things
you can combine in pairs to get things of
the same type again. A typical example for
a group is the rotation group 5 you can take
any rotation and then add (do) a second ro-
tation, to yield a third combined rotation!

A symmetry then is the property of an ob-
ject to not change upon application of the
corresponding group operation. You might
be wondering why I would want to sepa-
rate symmetries as properties of objects
from symmetries as operations on those
objects. And wondering this, you are of
course correct. Because mathematically
we never even talked about the object in
the first place. In reality we always take the
approach:

1. Take object, look at what operations
leave it unchanged

2. Throw away the object
3. Only consider the symmetries of the

object
So in effect by using the symmetries we are
intentionally forgetting the details of the
object. If you are a chemist, you have done

this a billion times before, when reducing
a molecule to its point group. From a point
group you cannot go back to the molecule
(because in the process you have thrown
too many details away).
If we want to go back and explain the confu-
sion of the shark we need only find its point
group (Cs ). Checking if Cs contains a C2d

axis will tell us if the shark ought to have
been surprised. And oh wonder, if we check
the character table ofCs we see noC2d axis,
which proves the point, the shark has every
right to be confused (isn’t maths useful :D)

So why did I separate the symmetry oper-
ations from the symmetries of the object?
Well there is a simple answer:

Sharks are not just a collection
of symmetries!

To describe a shark fully we need way more
information. More information in mathe-
matics means more dimensions!

Parallel Orthogonal dimensions
What do I mean when I say more dimen-
sions? Normally we think of dimensions as
something physical, like the three dimen-
sions of space, the two dimensions of a
sheet of paper or the one dimension of a
line.
This mindset is limiting, because while we
might be able to stretch our imagination
to include time as a fourth dimension, try-

5 see the title of this essay
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ing to get geometric interpretations of 4D
hypercubes will give you nothing but a
headache.
If we take a step back from the physical in-
terpretations of dimensions and take a look
at what they actually mean we realize some-
thing pretty neat.
To illustrate let me ask you a few easy ques-
tions about dimensions you understand in-
tuitively:
• How many things do you need to tell me

about a block in a city for me to find it?
• If you know on which street I live, how

much more information do you need to
find my house?

The answers to those questions should be
two and one respectively, the dimensions
of the spaces the objects we were describ-
ing live in. 6 If we continue that trend, the
simplest thing we can say about a four di-
mensional space is that any point within it
can be described with four coordinates!
Inversely this also means that if we have a
thing that can be described using N num-
bers we can just pretend that this thing lives
in an N dimensional space.
A pretty stupid example for this are IKEA
chairs 7 Many chairs there you can buy with
both different wood and with different poll-
sters. If I need to tell my friend which chair
to buy I can tell them three things:
• Which chair model to buy

• what wood to choose
• and which pollster.

In essence IKEA chairs live in a three di-
mensional space. Note that those three
‘configuration-dimensions’ have nothing
to do with the three spatial dimensions in
which a chair lives, they are dimensions not
of real space, but of configuration space.
To accentuate this point, if I’m telling my
friend where to put the chair after buying it
I need to tell them the coordinate (lets say
at the back and right). The final resulting
chair is now a five dimensional object (or a
5D-vector see Figure 1.2).
Going back to our shark we realize that to
describe a shark we need many, maybe an
infinite amount of dimensions. We immedi-
ately realize this is terribly inconvenient for
any operation we want to perform on the
shark. But luckily the mathematical branch
of representation theory has our back.

Figure 1.2: Illustration of a 5D chair vector

Symmetry means shuffling matrices
We saw previously that we can describe
symmetries on objects by using group the-

6 2D map of a city or 1D street
7 not sponsored
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ory. And we saw that we can describe ob-
jects by using N-dimensional vectors. We
might now ask how the symmetry of the
object relates to the symmetry of the vec-
tor view of said object. There has to be a
relation, because I can always create a ‘ro-
tated vector’ by first doing the symmetry
on the object and then transforming the
object to a vector. Mathematicians express
this possibility using a so called commuta-
tive diagram (see figure 1.3):

Figure 1.3: Commutative diagram for sym-
metries on sharks

We can see that we can follow both the
upper and the lower part of the square to
end at the same place. When we are ask-
ing about what the symmetry is on a vector

we are in essence asking about the bottom
edge of the square.
But before we find the exact identity of the
symmetry we might want to find out what
type of ‘thing’ this vector-symmetry will be.
We know that the vector-symmetry will be
a thing that maps a vector onto a vector.
There is one object we know from linear
algebra that does this trick fairly easily, ma-
trices! 8

Once we have found out how a symmetry
acts on both the objects and on the vectors,
we can associate the group action with the
corresponding matrix by going around the
commutative diagram.
This same procedure can be done for ev-
ery symmetry in a symmetry group. The re-
sulting mapping between symmetries and
matrices is called a representation.
It is important to note here that a represen-
tation of a group is not unique, quite the
opposite actually! You see the type of thing
on the bottom edge of the square really de-
pends on the type of vector we built in the
first place.
I’ll elaborate with a simple example. Let’s
go back to the point where we defined a
vector corresponding to our shark, we said
there that we might need thousands of pa-
rameters to fully characterize a shark, and
this is true. But what if we were lazy and re-

8 I know that assuming a linear structure here seems arbitrary, but as long as we assume the objects to be
actual vectors (which can be doubted for the shark and chair example) we can always build such a linear
structure
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ally only cared about one or two properties
of the shark. Let’s say we only care about
the width and the length of the shark, our
resulting vector have two dimensions, one
for each of the two attributes.
We can still transform a shark into a vector.
And we can still decide if we want to apply
the symmetry to the shark, or the matrix to
the vector. But now the matrix will be a 2 by
2 matrix. And of course the same holds for
any number of attributes we might want to
define of the shark.
To recap, a representation is a way to con-
sistently transform symmetries to matrices.
The size of the matrices depend on our en-
coding of the original object and represen-
tations are not unique.
Why would we care about this matrix and
vector stuff if we can just look at the object
and the group actions? That is a fair con-
cern and I know this representation theory
stuff can be extremely abstract, but the real
reason why we keep up with these compli-
cations is that understanding how the gen-
eral structure of representations work gives
us a great insight into how we can simplify
hard problems.

Symmetry means getting to terms
with the complexity of the universe
We saw previously that there are many
different representations for a symmetry
group. A logical question might be if there
is a way to find which of these representa-

tions are useful.
To find which representations are useful we
might want to find the smallest possible
representation that still ’captures the sym-
metries’ of the object under study.
To find these smallest representations we
need to understand what it means for a rep-
resentation to be ’small’. The word mathe-
maticians prefer to use here actually is ir-
reducible. An irreducible representation or
irrep for short has to be the smallest rep-
resentation because it literally cannot be
’reduced’/ made smaller.
So what does it mean to be irreducible, or
asked differently what does it mean to be
reducible?
Let’s quickly think about our poor shark
again. We previously saw that the shark can
be lazily described using the two dimen-
sions of width and length. Let’s actually
reformulate that a bit and call it core-to-fin-
distance and length. Let’s try to explicitly
construct a representation for this 2D shark.
First the symmetries. We directly see that
there are just two σ and the identity. One
way to construct a representation here
would be the following:

id →

(
1 0

0 1

)
,σ →

(
1 0

0 −1

)
Both symmetries map the length onto the
length (seen by the top left one in the ma-
trix). Where it becomes interesting is the
bottom right. As you can see the mirror op-
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eration flips the core-to-fin-distance. Even
more interestingly we see that it seems like
there are two different behaviors in both
matrices, once the behavior of the top left,
and once the behavior of the bottom right.
It almost looks like the length part of the
shark works fundamentally differently to
the left/right part of the shark....
What if we just say the shark is only charac-
terized by length? The resulting represen-
tation would be the following:
id →

(
1
)
,σ →

(
1
)

This is just a 1D representation! We also see
this representation as the top left of both
of the matrices in the 2D example!
Let’s see if we can do the same thing by say-
ing the shark is described by left-span and
right-span:
id →

(
1
)
,σ →

(
−1
)

This is an other (different) 1D representa-
tion! This one being the bottom right of
both matrices in the 2D case!
Moreover it turns out that for Cs those are
all the irreps there are!

Let that quickly sink in. What did we ob-
serve just now?
We took a look at different properties a
shark had and we found out that some
properties transform differently to other
properties. We then used that fact to find
minimal combinations of properties that
behave in this specific way. The first rep-
resentation we found, the boring one was

a property that did not change upon re-
flection. This irrep is often just called the
trivial representation. Other names for it
are the completely symmetric representa-
tion the A1 representation or just A′. It de-
scribes any property of the shark that is not
affected by mirroring, in effect this means
any property which lies on the bisection of
the shark.
The second irrep we found is often called
the antisymmetric representation or A′′. It
describes properties that flip or exchange
upon mirroring. Every property that con-
tributes to the ’bilateral-ness’ of the shark
will be represented here.

The way we would express the fact that this
2D description of the shark behaves in this
way would be the following: A′ ⊕ A′′. This
means that the 2D shark is one part sym-
metric (the length) and one part antisym-
metric (the fin-to-core-distance)

. We can make our description of the shark
more detailed and see how that changes
which irreps make up our vector descrip-
tion of the shark. For this let’s consider a
shark as the following 4D object (see 1.4)
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Figure 1.4: A four dimensional shark

Here we describe the shark as a combina-
tion of the tail length, the snout length, the
fin length and the fin-to-core-distance. By
observing how the symmetries id andσ act
on those measurements we see that three
of them behave symmetrically (red), while
one is flipped (green). The resulting rep-
resentation is thus A′ ⊕ A′ ⊕ A′ ⊕ A′′ =

3A′ ⊕ A′′. Translated this means that our
4D shark is three parts symmetric and one
part antisymmetric.

This is pretty cool, because now we can de-
compose objects into their symmetry parts,
we can say which parts of an object behave
in a specific symmetric way.

Let me give you a more elaborate example,
let’s consider Cr(CO)6. The point group
here is Oh. First consider the ligands as one
block. To describe the complex we need to
specify the distance between the ligands
and the central atom, which amounts to
six dimensions. Let’s try to decompose the
full 6D representation into irreps I will spare

you the math but you can look it up here if
you are interested[?] We could do the full re-
duction formula approach, or we can try to
intuit what parts we would expect. First we
can describe the complex using the metal-
ligand distance. This is one number, that
does not change upon application of sym-
metries. This means that metal-ligand dis-
tance is fully symmetric and transforms ac-
cording to A1g . We now have 5 more di-
mensions left. The second thing we could
consider is the z-elongation, meaning how
much the two ligands on the z axis are dis-
placed from the average distance to the
atom (think Jahn-Teller effect). To describe
this elongation we will have two parts, the
’moving apart’ dimension and the ’moving
together’ dimension. Thus the irrep needs
to be two dimensional. Looking at the char-
acter table we see that we need to choose
between Eu and Eg . The major difference
between the two is the action ofσh on them.
For Eu applying σh flips the property, while
for Eg it remains the same. Both the mov-
ing apart and the moving together dimen-
sion stay the same upon application of σh

which means this has to be Eg . We are now
left with 3 more dimensions we need to ex-
plain. For this we will consider the equa-
torial ligands, there are four so we might
be tempted to say we need a four dimen-
sional representation, but it turns out you
can fully describe the quadrilateral using

9 To derive this think about the quadrilateral as 4 points with two coordinates each → 8 dimensions in total.

7



1 Get rotated, idiot!

three parameters.9 After some more consid-
eration we will find that the resulting sym-
metry isT1u . The full representation is thus
A1g ⊕ Eg ⊕ T1u . Each of these representa-
tion describes
• The ’total symmetry-ness’/ the distance

from the metal.
• The ’axial deformation-ness’/ the dis-

tance between the z-ligands and the
center of mass offset from the metal.

• The ’equatorial deformation-ness’
. We can now find out how those ligands
interact with our metal center. By applying
the same representation theory on the d-
orbitals of the metal we can see that the cor-
responding representation isEg⊕T2g . One
of the irreps (Eg ) matches, which means
that hybridization is possible, which will
stabilize the orbitals. The other does not
match (T2g and T1u), meaning the T2g part
of the d-orbitals will not interact and re-
main non-bonding. This behavior explains
exactly the splitting of the ligand field in the
octahedral configuration!

The fact that symmetry tells us something
about the energetic structure of a molecule
is no coincidence. It is the direct conse-
quence from one of the most central the-
orems in representation theory: Schurs
lemma.[?] In simplified terms it states that
any function on a symmetric object, which

preserves that symmetry (In physics the
hamiltonian is a good example) will have
solutions with the same ’shape’ as the ir-
reps of the object. This means that if I find
that my molecules symmetry is made up
from one 1d one 2d and one 3d irrep any
solution to a equally symmetric hamilto-
nian will at most have three solutions with
degeneracy 1,2 and 3. This is why we can la-
bel degenerate orbitals with the symmetry
symbols, they are directly coupled!

To summarize: We figured out how irreps
are ’fundamental buildingblocks’ of sym-
metric objects. We have also seen some
examples on how to interpret the irreps. Fi-
nally using Schurs lemma we managed to
convince ourselves why symmetries can re-
duce the difficulty of mathematical prob-
lems by restricting the solutions to the sym-
metries.

Symmetry means seeing beauty in
nature

We are surrounded by a multitude of sym-
metries, some of them are evident like mir-
ror and rotation symmetries. Others are
more obscure like time translation symme-
try. To end this dive into symmetry and rep-
resentation theory I would like to show you
my favorite applications of symmetry:

We now remove one dimension for every point, because they need to stay on the coordinate axis (for the
symmetry). We also already parametrized the average distance from the center using A1g , which removes
an additional dimension, leaving us with 3
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The Noether Theorem
For the people that haven’t read my article
’Go with the Flow’ in Exsi ’Fluss’[?] I will give
a brief summary 10. The fundamental state-
ment of the Noether Theorem is that any
conserved quantity belongs to a continu-
ous symmetry.
It allows us to go from the observation
that space is translation symmetric to the
realization that momentum must be con-
served!
Equipped with our new tools of represen-
tation theory we can now extend this un-
derstanding. In the Noether Theorem the
symmetries need to be explicitly continu-
ous, but using representation theory we
can now also tackle discrete symmetries.
A adapted Noether Theorem might be for-
mulated as such:

Any irreducible representation
for the symmetry group of a
Hamiltonian (read any irrep
for the energy landscape) can
be mapped onto a conserved
subspace.

Essentially this means that if my energy re-
lations are in a specific symmetry group (for
exampleCH4 will have aTd Hamiltonian). I
can find properties of the system that need
to be conserved. In the CH4 example we
could take a look at the vibrational Hamil-

tonian. Solving the full problem gives us
a number of normal modes. Every normal
mode corresponds to a irreducible repre-
sentation of the Hamiltonian. The type of
irrep for every vibration is now conserved.
This means that no matter what happens
inside of the molecule, vibrational energy
in a antisymmetric vibration will never be
able to transform into a symmetric vibra-
tion. The symmetry of the vibrational en-
ergy is conserved!11

This is extremeley powerful and is nowdays
used in spectroscopy for example as a cri-
terion for fermi resonnance[?]

Symmetries and gauge invariance
When building a fundamental theory such
as electromagnetism, we sometimes stum-
ble over variables we can seemingly choose
arbitrarily. We can, for example, choose the
electromagnetic potential to have an arbi-
trary offset. (We don’t care if the plus of
the battery is at 12V and the minus at 0V,
or if the plus is at 13V and the minus at 1V.)
The freedom to choose globally what volt-
age offset any potential has is called gague
freedom or gague invariance.

In quantum electrodynamics one of the
fundamental assumptions/findings is that
the dirac-field (the field of the electron)
possesses local U1 phase symmetry. This
means that we can multiply any complex

10 If you’d like to learn more about how symmetries and flow combine feel free to check it out!
11 This is very closeley linked to Schurs lemma we saw before
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phase at any position to the electron field
and nothing changes.
The bare electron Lagrangian surprisingly
does actually not have this symmetry. But
if we impose this symmetry nontheless and
adjust the Lagrangian to fit this symmetry
we can derive that there needs to be an ad-
ditional thing that interacts with electrons.
Investigating further it can be shown that
this additional thing is the electromagnetic
field!
It is essentially possible to derive the exis-
tence of light from the nature of electrons
and an additional symmetry requirement!
If you want to learn more about this I can
highly recommend the video ’Electromag-
netism as a gague theory’ by Richard Be-
hiel.[?]

Symmetry means ending with the
beginning
There are many more applications of sym-
metry, and if you look around yourself and
are open to perceiving the world through
the lense of representation theory you will
discover many more. I hope this article has
given you some insights into the applica-
tion, brilliance and beauty of symmetry.

So to round off this entire article; imagine if
you will, being a shark, minding your own
business. Just swimming around the ocean
floor. If you want to understand how sym-
metry works you should definitively check

out this12!

12 Getrotated,idiot!;)
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