


Gowith the Flow

Raphael Zumbrunn “Not physics!” you
sigh after realising the Exsi article you just
started reading is not about attaining a per-
fect state of mind, not about the beauty of
water finding its way seawards, not about
novel ways to perform chemistry, but about
stone-cold physics. But maybe learning
about flow isn’t too bad. I mean water is
kind of interesting. . . Take, for example, the
fact that if you wash a spoon, no matter
what you do, the water always magically
deflects exactly in your direction.

Maybe physics isn’t too bad, just this once.

You shall be disappointed once more when
you realise that the flow in physics I am talk-
ing about has little to do with water, but
rather everything with . . .everything.

The Noether Theorem
The beginning of the 20th century was
marked by many revolutionary inventions
and innovations in science, most famously
perhaps, the inception of special and gen-
eral relativity by Albert Einstein in 1905 and
1915. While Einstein’s contributions were
remarkable in their postulates about the
absolute value of the speed of light and
the complexities of space and time, I will
discuss another, less known, but arguably
more important scientific revelation in this
article. In the year 1915, the mathemati-
cian Emmy Noether proved the eponymous
Noether theorem, believed by many physi-

cists to be the most beautiful theorem in
existence.

In short, Noether’s theorem states that ev-
ery continuous symmetry is fundamentally
connected with a conservation law.

You, dear reader, might now have a series
of questions about the content and extent
of this article, but don’t worry. I will keep
myself as short as I want (which is not very
short) First, I owe you an explanation of
how this topic relates to the topic of flow:

Flow
Imagine you want to simulate a river. What
things would you have to consider, and how
would you go about modeling these things
with physics? A river definitely has some
speed, and this speed is probably not the
same at each point, which means we need
an object to hold the speed of each “parti-
cle” of water according to its position. One
way to construct such an object is a func-
tion:

f (x⃗) = v(x⃗) (1.1)

We also might want to know in which di-
rection the river flows at a certain point, so
we modify our function to take a position
and output a vector, which designates the
speed and the direction of the flow at that
point.

f (x⃗) = v⃗(x⃗) (1.2)

If we display this function, we might see
something like this:
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1 Go with the Flow

Figure 1.1: Vector model of a river. Arrows
indicate speed and direction of the flow.

This thing we just created might be cool and
all, but it’s not a river! It doesn’t even move,
it’s just a bunch of arrows! To implement
a flowing river, let’s think about how we
see that a river flows in the first place. If all
the small “pieces of water” looked exactly
the same, like a perfectly clean and steady
stream of water, it would be impossible to
distinguish this river from a still image (this
will be relevant soon). To be able to see
the flow, we need to introduce some sort of
marker. This is the same technique used in
wind channels, where one adds coloured
smoke to visualise the flow of the air.

The question our model now needs to an-
swer is a different one: we want to know
how a marker deforms and moves over
time. If we put a marker at each coordinate
point, we could effectively see how our ini-
tial coordinates are deformed by the flow
over time.

Figure 1.2: We mark our flow with a grid,
which deforms after some time. By tracking
the points and shapes on the grid we can
see how the flow “flows”.

Not only that, we can even put shapes onto
the grid and see how they flow!

At this point, you perhaps think back to the
beginning of the article, where I mentioned
that this article was explicitly not about
flows of water! Aggravated by this evidently
wrong advertisement, you start skipping to
the next article, when you are reminded of
the historical tangent this article went off
on about half a page ago. Yes, this article
did write something about the Noether the-
orem, this apparently “very beautiful theo-
rem (trust me)” which still means nothing
to you.

To change this fact we first need to talk
about symmetry:

Symmetry
Symmetry is something we all, especially
the chemists among us, have a keen intu-
ition about. Often in everyday situations,
symmetry shows itself in mirror images,
which can recreate one half of an object
from the other.
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But mirror symmetry isn’t the only symme-
try. For example a hexagon has sixfold rota-
tional symmetry, meaning we can recreate
the full hexagon from a sixth of itself by ro-
tation.

Figure 1.3: Discrete sixfold rotation sym-
metry of a hexagon.

Now more formally we call a thing X sym-
metric under the action A if doing A to X
leaves X unchanged. We also say that X is
A-invariant.

A hexagon, therefore, is symmetric under
the 60 degree rotation. You can rotate a
hexagon by 60 degrees and see no change.
In other words: If you look away from a
hexagon for even just a second, who knows
how often it has been rotated by incre-
ments of 60 degrees when you look back
at it?! We will come back to this point in a
second.

Now those symmetries are all discrete,
meaning they take definite steps. The
Noether theorem, however, only cares
about continuous symmetries.

The idea of continuous symmetries is fun-
damentally the same as discrete symme-
tries, meaning that X is symmetric under A
if A leaves X unchanged.

A typical example is the rotational symme-
try of a circle. I can rotate the circle con-
tinuously without changing the circle at all
(I promise it will make sense). The other
symmetry we already saw was the transla-
tional symmetry of free space. If I move my
empty universe around it’s still presum-
ably the same empty universe (and would
be indistinguishable from its original).

For a more abstract example, we can con-
sider the scale-squish symmetry of the
parabola (yes, that’s a name I just came up
with). If I zoom out of a graph of a parabola,
but adjust the y scaling in just the right way
the parabola looks the same as before. Ex-
plicitly the transformation x → x · a and
y → y · a2, which is the scaling x → x · a,
y → y ·a and the squishing y → y ·a gives
us the same parabola again. Note that this
symmetry was constructed from the obser-
vation that the parabola seems to grow less
steep as we scale it up. To compensate for
this fact we counteract this effect by squish-
ing the parabola back into shape.
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Figure 1.4: Scale-squish symmetry of a
parabola. Red is scaled to pink, which is
squished to orange. As the parabola ex-
tends to infinity above, we see that the
orange and the red curve are the same.
This procedure is a symmetry of the system.
Changing the degree of scaling/ squishing
continuously gives us the continuous sym-
metry.

This is a continuous symmetry: we can
vary as little or as much as we want, and
the parabola doesn’t change. It is impor-
tant to note something here. Just because
the parabola is symmetric in respect to the
scale-squish operation, or the circle is sym-
metric with respect to rotation, does not
mean that everything, not even the parts
of the object are symmetric. Consider a
segment of the circle, this segment is obvi-
ously not invariant under rotation. Nor are
segments of the parabola for that matter.

I have shown you some examples of con-
tinuous symmetries. But generally, what IS
continuous symmetry? Well, I’m glad you

asked. A shape X has the continuous sym-
metry of a flow A, if I can draw the shape
onto the flow and no matter how long I
wait/ let the flow flow, the shape remains
unchanged.

For the flow I drew above (Figure 1.2), the
lines along the flow are symmetric under it,
as they do not change, no matter how long
I wait. In general, if my shape follows the
current, it is symmetric under that flow.

We can try to apply this flow formalism to
the examples we already know.

Figure 1.5: The flow fields to the trans-
lation symmetry, the rotation symmetry
and the scale squish symmetry from left
to right.

As you can see, we can generate such a flow
for any continuous symmetry. These flows
are called Noether Currents, and they make
up the first half of the Noether theorem.

Invariance
But why do we care about such symme-
tries? What does it mean, physically, for
a system to be invariant under the flow A?
Let’s first consider an example: Imagine a
N2 molecule vibrating in space. Moving this
molecule will not change anything about
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its physics. This system is translation invari-
ant. In flow terms this means that if we ap-
ply the “everything flows from left to right”
flow (call this A), no matter how long we ap-
ply this flow, the molecule will remain un-
changed (except its position, but because
we have no other molecules to reference its
position to, this position is arbitrary). We
note, however, that no matter which way
we move the system (or let it flow for that
matter), there are some things we cannot
do. We can, for example, never let the sys-
tem flow in such a way as to excite a vibra-
tion. This is due to the fact that exciting
a vibration evidently changes the system,
meaning such an action cannot leave the
system unchanged and therefore, the sys-
tem cannot be A-invariant.

From this example we can extrapolate the
meaning of A-invariance. Letting the sys-
tem flow with A doesn’t change anything
within the system (that’s the definition).
But what this also implies is that any dy-
namics the system already has (if the sys-
tem already behaves in a certain natural
way, like the intrinsic vibration of N2), we
cannot reproduce this behaviour with our
flow. If we could, we could make physically
relevant changes on the system by letting
it flow with A, which would contradict the
premise that A leaves our system invariant.

In short, if our system is invariant under A,
then anything really happening in our sys-

tem is completely distinct from whatever
A does to the system.

Conserved Quantities
To remind you of what we are trying to do,
I will re-state the Noether theorem:

Every continuous symmetry has a conserved
quantity.
We saw the continuous symmetries, and
the way we model them with currents. Now
where is the conserved quantity? The rig-
orous answer is the following: “The con-
served quantity is given as the projection
of the conjugate momentum onto the flow”.
What do we mean by that? It means that
momentum along the flow is conserved.
As long as we go with the flow, we don’t
change our momentum. Which makes
sense, because if we did, then we would
end up in a situation where our flow, which
is supposed to leave our system invariant,
causes a change in the system!

It is important to note that momentum
which is not along the flow does not need
to be conserved. – Why? Because while our
flow keeps the full system invariant, it does
not guarantee that parts of the system stay
invariant (like the circle/circle segment ex-
ample above). Explicitly, this means that
by going to a different part of the flow (by
not following it) we can drift very far away
from where we started originally.

Take, for example, a particle in a tube.
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Along the axis of the tube we have transla-
tion invariance (we assume the tube to be
infinitely long). Using the Noether theorem
we can create the displacement flow (flow
through the pipe), which shows us that the
momentum projected onto this flow is con-
served. Now what happens if the particle
hits a wall because it was moving at an an-
gle to the flow? It suddenly flips its momen-
tum when it is reflected. We see that mo-
mentum along this axis is not conserved!

Figure 1.6: Translation invariance along an
infinite pipe. While momentum along the
flow is conserved, momentum orthogonal
to it is not.

Now we were talking about classical mo-
mentum, but there is one last concept from
general mechanics I don’t want to keep
from you: Conjugate momentum.

Momentum and Beyond
The idea behind conjugate momentum is
the following: The position variable x in
our equations of motion is in the end just
a mathematical symbol with no meaning
attached. If we free ourselves from the idea
that x needs to be a position we can find
something marvelous: Any two variables
that have a value and can change in time
that are represented in the physical system
can be related to each other as “position”
and “momentum”. As an example, let’s
compare the energy of the harmonic oscil-
lator:

E =
1

2
kx2 +

1

2
mv 2 (1.3)

with the energy in an LC circuit

E =
1

2C
Q2 +

1

2
LI 2 (1.4)

Figure 1.7: Harmonic oscillator (left) and
LC circuit (right). Different physical realisa-
tions of the same fundamental mathemat-
ics.

Note that v = x ′ and I = Q ′.

Looking at the formula for the energy, we
realise that even though the physics is fun-
damentally different, the maths is not. As a
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matter of fact, we can simply assign k = 1
C

andL = m and obtain the exact same equa-
tions.

Let’s interpret this mathematical “coinci-
dence” from a physical standpoint: We
know that the harmonic oscillator has mo-
mentum, so the circuit also needs some
kind of momentum. The momentum in the
oscillator is m · v thus by analogy the “mo-
mentum” of the LC circuit needs to be L · I .
This coincidentally gives us a very relevant
quantity from electronics, the voltage V !
So we learn that in this systemV is the con-
jugate momentum to Q, and we can ap-
ply all of our fancy maths to not only this
system, but also to basically any other sys-
tem that contains variables whose change
is governed by a Hamiltonian!

To elaborate a bit on the use of conjugate

momentum, if we imagine time as a fourth
dimension, and we note that the physics
in our system is time independent (as in
the forces don’t change over time). We find
that our system is time translation invari-
ant. This means that doing physics now
should be the same as doing physics to-
morrow. We can even find the conjugate
momentum to this time translation, which
should be conserved. If we do the maths
(which is a bit more elaborate than what I
am describing) we find that the conserved
quantity from time translation invariance
is energy. In short, we can figure out that
energy within our system is conserved from
the fact that physics is the same now and
tomorrow!

There are a bunch more invariants we can
derive from symmetries of our universe. Ta-
ble 1.1 is a list from Wikipedia.

Table 1.1: List of symmetries related to conservation laws. Unobservables are the quan-
tities which have no absolute value due to the symmetry.[1]

Symmetry Transformation Unobservable Conservation law

Space-translation r → r + δr
absolute position in

space
momentum

Time-translation t → t + δt absolute time energy

Rotation r → r′
absolute direction in

space
angular momentum

Space inversion r → −r absolute left or right parity

Time-reversal t → −t absolute sign of time
Kramers

degeneracy
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Sign reversion of
charge

e → −e
absolute sign of electric

charge
charge conjugation

Particle substitution
distinguishability of

identical particles
Bose or Fermi

statistics

Gauge
transformation

ψ → e iNθψ
relative phase between
different normal states

particle number

Conclusion
The Noether theorem states that for every
continuous symmetry there exists a con-
servation law. We can find this conserva-
tion law by expressing the continuous sym-
metry as a flow which leaves our system
unchanged. Going along with this flow we
see that momentum is unchanged, while
cutting across the flow will not guarantee
the same. Momentum can be interpreted
more generally than we know it. The most
general form of momentum is the so-called
generalised or conjugate momentum to a
quantity. It expresses how the quantity it is
conjugated to should evolve in time. Com-
bining these two concepts, we can find con-

served quantities from symmetries in any
physical system, giving us a fundamental
insight into how our universe works! And
as a small bonus we learn a little lesson in
life: When in doubt about what to do, the
universe will always tell you: Just go with
the flow!
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