Woche 10

Photo by Moritz Kindler on Unsplash
$\newcommand{\dede}[2]{\frac{\partial #1}{\partial #2} } \newcommand{\dd}[2]{\frac{d #1}{d #2}} \newcommand{\divby}[1]{\frac{1}{#1} } \newcommand{\typing}[3][\Gamma]{#1 \vdash #2 : #3} \newcommand{\xyz}[0]{(x,y,z)} \newcommand{\xyzt}[0]{(x,y,z,t)} \newcommand{\hams}[0]{-\frac{\hbar^2}{2m}(\dede{^2}{x^2} + \dede{^2}{y^2} + \dede{^2}{z^2}) + V\xyz} \newcommand{\hamt}[0]{-\frac{\hbar^2}{2m}(\dede{^2}{x^2} + \dede{^2}{y^2} + \dede{^2}{z^2}) + V\xyzt} \newcommand{\ham}[0]{-\frac{\hbar^2}{2m}(\dede{^2}{x^2}) + V(x)}$ # A1 Es kann hilfreich sein zu betrachten welche Liganden gegenüber von einander stehen # A2 Eine alternative Definition der Chiralität ist die Abwesenheit einer Drehspiegelachse # A3 Betrachte zuerst alle Kombinationen von gegenüberstehenden Liganden. Dann betrachte deren Spiegelbilder # A4 Enantiomer: Spiegelpaar Diastereomer: Andere Konfiguration