Solutions

Photo by Moritz Kindler on Unsplash
## S1 Don't forget to change to moles. To determine the age of the rock sample, we can use the formula for radioactive decay: $$N_{U}(t) = N_{U,0}\left(e^{-ln(2)\frac{t}{t_{0.5}}}\right)$$ $$N_{Pb}(t) = N_{U,0}\left(1-e^{-ln(2)\frac{t}{t_{0.5}}}\right) + N_{Pb,0}$$ Consider $\frac{N_{Pb}(t)-N_{Pb,0}}{N_{U}(t)}$ $$\frac{N_{Pb}-N_{Pb,0}}{N_{U}}=1-e^{-ln(2) \frac{t}{t_{0.5}}}$$ $$\ln\left(1-\frac{N_{Pb}-N_{Pb,0}}{N_{U}}\right)= -\ln(2) \frac{t}{t_{0.5}}$$ $$-\ln\left(1-\frac{N_{Pb}-N_{Pb,0}}{N_{U}}\right)\frac{1}{ln(2)} t_{0.5}= t$$ Watch out, that $N_{U}$ is the original amount of Mothernucleid (so for A1 you need to calculate that first) ### A1 **a)** 4.32 billion yr **b)** 2.21 billion yr **c)** Beta decay: $$n \to e^{-}+ p^{+} + \bar \nu$$ ### A2 **a)**1.71 billion yr **b)**0.39 billion yr