Trigonometry, Trigonomecry

Photo by Jeremy Bishop on Unsplash
$\newcommand{\dede}[2]{\frac{\partial #1}{\partial #2} } \newcommand{\dd}[2]{\frac{d #1}{d #2}} \newcommand{\divby}[1]{\frac{1}{#1} } \newcommand{\typing}[3][\Gamma]{#1 \vdash #2 : #3} \newcommand{\xyz}[0]{(x,y,z)} \newcommand{\xyzt}[0]{(x,y,z,t)} \newcommand{\hams}[0]{-\frac{\hbar^2}{2m}(\dede{^2}{x^2} + \dede{^2}{y^2} + \dede{^2}{z^2}) + V\xyz} \newcommand{\hamt}[0]{-\frac{\hbar^2}{2m}(\dede{^2}{x^2} + \dede{^2}{y^2} + \dede{^2}{z^2}) + V\xyzt} \newcommand{\ham}[0]{-\frac{\hbar^2}{2m}(\dede{^2}{x^2}) + V(x)}$ ### Trigonometry, Trigonomecry Die wichtigsten Sätze: $cos^{2}+ sin^{2} = 1$ $cos = \frac{e^{ix}+e^{-ix}}{2}$ $sin = \frac{e^{ix}-e^{-ix}}{2i}$ $tan = \frac{sin}{cos}$ $\sin(a+b) = \sin a \cos b + \sin b \ cos a$ $\cos(a+b) = \cos a \cos b - \sin a \sin b$ $\sin a + \sin b = 2 \sin \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$ $\cos a + \cos b = 2 \cos \left(\frac{a+b}{2}\right) \cos \left( \frac{a-b}{2} \right)$